Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolic Model of the Phytophthora infestans-Tomato Interaction Reveals Metabolic Switches during Host Colonization.

Identifieur interne : 000456 ( Main/Exploration ); précédent : 000455; suivant : 000457

Metabolic Model of the Phytophthora infestans-Tomato Interaction Reveals Metabolic Switches during Host Colonization.

Auteurs : Sander Y A. Rodenburg [Pays-Bas] ; Michael F. Seidl [Pays-Bas] ; Howard S. Judelson [États-Unis] ; Andrea L. Vu [États-Unis] ; Francine Govers [Pays-Bas] ; Dick De Ridder [Pays-Bas]

Source :

RBID : pubmed:31289172

Descripteurs français

English descriptors

Abstract

The oomycete pathogen Phytophthora infestans causes potato and tomato late blight, a disease that is a serious threat to agriculture. P. infestans is a hemibiotrophic pathogen, and during infection, it scavenges nutrients from living host cells for its own proliferation. To date, the nutrient flux from host to pathogen during infection has hardly been studied, and the interlinked metabolisms of the pathogen and host remain poorly understood. Here, we reconstructed an integrated metabolic model of P. infestans and tomato (Solanum lycopersicum) by integrating two previously published models for both species. We used this integrated model to simulate metabolic fluxes from host to pathogen and explored the topology of the model to study the dependencies of the metabolism of P. infestans on that of tomato. This showed, for example, that P. infestans, a thiamine auxotroph, depends on certain metabolic reactions of the tomato thiamine biosynthesis. We also exploited dual-transcriptome data of a time course of a full late blight infection cycle on tomato leaves and integrated the expression of metabolic enzymes in the model. This revealed profound changes in pathogen-host metabolism during infection. As infection progresses, P. infestans performs less de novo synthesis of metabolites and scavenges more metabolites from tomato. This integrated metabolic model for the P. infestans-tomato interaction provides a framework to integrate data and generate hypotheses about in planta nutrition of P. infestans throughout its infection cycle.IMPORTANCE Late blight disease caused by the oomycete pathogen Phytophthora infestans leads to extensive yield losses in tomato and potato cultivation worldwide. To effectively control this pathogen, a thorough understanding of the mechanisms shaping the interaction with its hosts is paramount. While considerable work has focused on exploring host defense mechanisms and identifying P. infestans proteins contributing to virulence and pathogenicity, the nutritional strategies of the pathogen are mostly unresolved. Genome-scale metabolic models (GEMs) can be used to simulate metabolic fluxes and help in unravelling the complex nature of metabolism. We integrated a GEM of tomato with a GEM of P. infestans to simulate the metabolic fluxes that occur during infection. This yields insights into the nutrients that P. infestans obtains during different phases of the infection cycle and helps in generating hypotheses about nutrition in planta.

DOI: 10.1128/mBio.00454-19
PubMed: 31289172
PubMed Central: PMC6747730


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolic Model of the
<i>Phytophthora infestans</i>
-Tomato Interaction Reveals Metabolic Switches during Host Colonization.</title>
<author>
<name sortKey="Rodenburg, Sander Y A" sort="Rodenburg, Sander Y A" uniqKey="Rodenburg S" first="Sander Y A" last="Rodenburg">Sander Y A. Rodenburg</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Bioinformatics Group, Wageningen University, Wageningen, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Bioinformatics Group, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seidl, Michael F" sort="Seidl, Michael F" uniqKey="Seidl M" first="Michael F" last="Seidl">Michael F. Seidl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vu, Andrea L" sort="Vu, Andrea L" uniqKey="Vu A" first="Andrea L" last="Vu">Andrea L. Vu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Govers, Francine" sort="Govers, Francine" uniqKey="Govers F" first="Francine" last="Govers">Francine Govers</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Ridder, Dick" sort="De Ridder, Dick" uniqKey="De Ridder D" first="Dick" last="De Ridder">Dick De Ridder</name>
<affiliation wicri:level="4">
<nlm:affiliation>Bioinformatics Group, Wageningen University, Wageningen, the Netherlands dick.deridder@wur.nl.</nlm:affiliation>
<country wicri:rule="url">Pays-Bas</country>
<wicri:regionArea>Bioinformatics Group, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31289172</idno>
<idno type="pmid">31289172</idno>
<idno type="doi">10.1128/mBio.00454-19</idno>
<idno type="pmc">PMC6747730</idno>
<idno type="wicri:Area/Main/Corpus">000438</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000438</idno>
<idno type="wicri:Area/Main/Curation">000438</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000438</idno>
<idno type="wicri:Area/Main/Exploration">000438</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolic Model of the
<i>Phytophthora infestans</i>
-Tomato Interaction Reveals Metabolic Switches during Host Colonization.</title>
<author>
<name sortKey="Rodenburg, Sander Y A" sort="Rodenburg, Sander Y A" uniqKey="Rodenburg S" first="Sander Y A" last="Rodenburg">Sander Y A. Rodenburg</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Bioinformatics Group, Wageningen University, Wageningen, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Bioinformatics Group, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seidl, Michael F" sort="Seidl, Michael F" uniqKey="Seidl M" first="Michael F" last="Seidl">Michael F. Seidl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vu, Andrea L" sort="Vu, Andrea L" uniqKey="Vu A" first="Andrea L" last="Vu">Andrea L. Vu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Govers, Francine" sort="Govers, Francine" uniqKey="Govers F" first="Francine" last="Govers">Francine Govers</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Laboratory of Phytopathology, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Ridder, Dick" sort="De Ridder, Dick" uniqKey="De Ridder D" first="Dick" last="De Ridder">Dick De Ridder</name>
<affiliation wicri:level="4">
<nlm:affiliation>Bioinformatics Group, Wageningen University, Wageningen, the Netherlands dick.deridder@wur.nl.</nlm:affiliation>
<country wicri:rule="url">Pays-Bas</country>
<wicri:regionArea>Bioinformatics Group, Wageningen University, Wageningen</wicri:regionArea>
<orgName type="university">Université de Wageningue</orgName>
<placeName>
<settlement type="city">Wageningue</settlement>
<region nuts="2">Gueldre (province)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Profiling (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Lycopersicon esculentum (genetics)</term>
<term>Lycopersicon esculentum (metabolism)</term>
<term>Lycopersicon esculentum (parasitology)</term>
<term>Metabolic Flux Analysis (MeSH)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Phytophthora infestans (genetics)</term>
<term>Phytophthora infestans (metabolism)</term>
<term>Plant Diseases (parasitology)</term>
<term>Plant Leaves (parasitology)</term>
<term>Thiamine (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse des flux métaboliques (MeSH)</term>
<term>Feuilles de plante (parasitologie)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Lycopersicon esculentum (génétique)</term>
<term>Lycopersicon esculentum (métabolisme)</term>
<term>Lycopersicon esculentum (parasitologie)</term>
<term>Maladies des plantes (parasitologie)</term>
<term>Phytophthora infestans (génétique)</term>
<term>Phytophthora infestans (métabolisme)</term>
<term>Thiamine (métabolisme)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Thiamine</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Lycopersicon esculentum</term>
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Lycopersicon esculentum</term>
<term>Phytophthora infestans</term>
<term>Thiamine</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Lycopersicon esculentum</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Host-Pathogen Interactions</term>
<term>Metabolic Flux Analysis</term>
<term>Metabolic Networks and Pathways</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse des flux métaboliques</term>
<term>Interactions hôte-pathogène</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The oomycete pathogen
<i>Phytophthora infestans</i>
causes potato and tomato late blight, a disease that is a serious threat to agriculture.
<i>P. infestans</i>
is a hemibiotrophic pathogen, and during infection, it scavenges nutrients from living host cells for its own proliferation. To date, the nutrient flux from host to pathogen during infection has hardly been studied, and the interlinked metabolisms of the pathogen and host remain poorly understood. Here, we reconstructed an integrated metabolic model of
<i>P. infestans</i>
and tomato (
<i>Solanum lycopersicum</i>
) by integrating two previously published models for both species. We used this integrated model to simulate metabolic fluxes from host to pathogen and explored the topology of the model to study the dependencies of the metabolism of
<i>P. infestans</i>
on that of tomato. This showed, for example, that
<i>P. infestans,</i>
a thiamine auxotroph, depends on certain metabolic reactions of the tomato thiamine biosynthesis. We also exploited dual-transcriptome data of a time course of a full late blight infection cycle on tomato leaves and integrated the expression of metabolic enzymes in the model. This revealed profound changes in pathogen-host metabolism during infection. As infection progresses,
<i>P. infestans</i>
performs less
<i>de novo</i>
synthesis of metabolites and scavenges more metabolites from tomato. This integrated metabolic model for the
<i>P. infestans</i>
-tomato interaction provides a framework to integrate data and generate hypotheses about
<i>in planta</i>
nutrition of
<i>P. infestans</i>
throughout its infection cycle.
<b>IMPORTANCE</b>
Late blight disease caused by the oomycete pathogen
<i>Phytophthora infestans</i>
leads to extensive yield losses in tomato and potato cultivation worldwide. To effectively control this pathogen, a thorough understanding of the mechanisms shaping the interaction with its hosts is paramount. While considerable work has focused on exploring host defense mechanisms and identifying
<i>P. infestans</i>
proteins contributing to virulence and pathogenicity, the nutritional strategies of the pathogen are mostly unresolved. Genome-scale metabolic models (GEMs) can be used to simulate metabolic fluxes and help in unravelling the complex nature of metabolism. We integrated a GEM of tomato with a GEM of
<i>P. infestans</i>
to simulate the metabolic fluxes that occur during infection. This yields insights into the nutrients that
<i>P. infestans</i>
obtains during different phases of the infection cycle and helps in generating hypotheses about nutrition
<i>in planta</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31289172</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>07</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolic Model of the
<i>Phytophthora infestans</i>
-Tomato Interaction Reveals Metabolic Switches during Host Colonization.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00454-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.00454-19</ELocationID>
<Abstract>
<AbstractText>The oomycete pathogen
<i>Phytophthora infestans</i>
causes potato and tomato late blight, a disease that is a serious threat to agriculture.
<i>P. infestans</i>
is a hemibiotrophic pathogen, and during infection, it scavenges nutrients from living host cells for its own proliferation. To date, the nutrient flux from host to pathogen during infection has hardly been studied, and the interlinked metabolisms of the pathogen and host remain poorly understood. Here, we reconstructed an integrated metabolic model of
<i>P. infestans</i>
and tomato (
<i>Solanum lycopersicum</i>
) by integrating two previously published models for both species. We used this integrated model to simulate metabolic fluxes from host to pathogen and explored the topology of the model to study the dependencies of the metabolism of
<i>P. infestans</i>
on that of tomato. This showed, for example, that
<i>P. infestans,</i>
a thiamine auxotroph, depends on certain metabolic reactions of the tomato thiamine biosynthesis. We also exploited dual-transcriptome data of a time course of a full late blight infection cycle on tomato leaves and integrated the expression of metabolic enzymes in the model. This revealed profound changes in pathogen-host metabolism during infection. As infection progresses,
<i>P. infestans</i>
performs less
<i>de novo</i>
synthesis of metabolites and scavenges more metabolites from tomato. This integrated metabolic model for the
<i>P. infestans</i>
-tomato interaction provides a framework to integrate data and generate hypotheses about
<i>in planta</i>
nutrition of
<i>P. infestans</i>
throughout its infection cycle.
<b>IMPORTANCE</b>
Late blight disease caused by the oomycete pathogen
<i>Phytophthora infestans</i>
leads to extensive yield losses in tomato and potato cultivation worldwide. To effectively control this pathogen, a thorough understanding of the mechanisms shaping the interaction with its hosts is paramount. While considerable work has focused on exploring host defense mechanisms and identifying
<i>P. infestans</i>
proteins contributing to virulence and pathogenicity, the nutritional strategies of the pathogen are mostly unresolved. Genome-scale metabolic models (GEMs) can be used to simulate metabolic fluxes and help in unravelling the complex nature of metabolism. We integrated a GEM of tomato with a GEM of
<i>P. infestans</i>
to simulate the metabolic fluxes that occur during infection. This yields insights into the nutrients that
<i>P. infestans</i>
obtains during different phases of the infection cycle and helps in generating hypotheses about nutrition
<i>in planta</i>
.</AbstractText>
<CopyrightInformation>Copyright © 2019 Rodenburg et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rodenburg</LastName>
<ForeName>Sander Y A</ForeName>
<Initials>SYA</Initials>
<Identifier Source="ORCID">0000-0002-7254-1696</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Bioinformatics Group, Wageningen University, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seidl</LastName>
<ForeName>Michael F</ForeName>
<Initials>MF</Initials>
<Identifier Source="ORCID">0000-0002-5218-2083</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Judelson</LastName>
<ForeName>Howard S</ForeName>
<Initials>HS</Initials>
<Identifier Source="ORCID">0000-0001-7865-6235</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vu</LastName>
<ForeName>Andrea L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Govers</LastName>
<ForeName>Francine</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0001-5311-929X</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>de Ridder</LastName>
<ForeName>Dick</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-4944-4310</Identifier>
<AffiliationInfo>
<Affiliation>Bioinformatics Group, Wageningen University, Wageningen, the Netherlands dick.deridder@wur.nl.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>X66NSO3N35</RegistryNumber>
<NameOfSubstance UI="D013831">Thiamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064688" MajorTopicYN="N">Metabolic Flux Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="Y">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013831" MajorTopicYN="N">Thiamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Phytophthora infestans </Keyword>
<Keyword MajorTopicYN="Y">metabolic modeling</Keyword>
<Keyword MajorTopicYN="Y">metabolism</Keyword>
<Keyword MajorTopicYN="Y">oomycetes</Keyword>
<Keyword MajorTopicYN="Y">tomato</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31289172</ArticleId>
<ArticleId IdType="pii">mBio.00454-19</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.00454-19</ArticleId>
<ArticleId IdType="pmc">PMC6747730</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1150-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24649486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lipids. 2017 Mar;52(3):207-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28197856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20196867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Dec 9;12(12):e1006097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27936244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 May 21;161(5):971-987</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26000478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000Res. 2018 Oct 30;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30467519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2009 Feb;281(2):193-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19050928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2012 Apr 23;13:57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22524245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 Jan;5(1):93-121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D459-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24225315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2017 Jan;35(1):81-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27893703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Fungi (Basel). 2018 Mar 20;4(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30152809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Oct 15;31(20):3299-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26085504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2010 Oct 19;6:422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20959820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2013 Aug 22;20(8):1012-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23911587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Feb;14(2):301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Aug 1;35(8):1887-1900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29701800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2017 Sep 8;71:21-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28504899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 04;5:370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25136345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2010 Aug 31;4:120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W350-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24848019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 17;6:750</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2012;8(5):e1002518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2012 Mar;20(3):113-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22300758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2018 Aug;108(8):916-924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29979126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2018 Sep 12;15(146):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30209043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Apr;179(4):1198-1211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30538168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jan 29;9(1):418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29379078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2010 Aug 23;4:118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20731870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23804074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2010 Oct;71(14-15):1615-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Apr;14(4):221-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26949049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 May;90(4):720-737</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27870294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2019 Mar;14(3):639-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30787451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Jun 13;13(6):e0198186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29897992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Mar;81(5):822-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25600836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Sep 25;9(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30254121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D523-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26527720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2016 Dec 5;371(1709):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28080985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSphere. 2017 Apr 12;2(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28435885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2009;7:e0121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Apr 3;8(1):5563</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29615754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2007 Jan;266(1):65-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17083369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:529-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27359366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 May;16(4):413-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25178392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 13;5:797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25628639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26476454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2018 Sep 28;9:1355</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30323767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Nov;10(6):843-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19849790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Jan;17(1):42-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25808779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2017 Jun 20;86:245-275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28301739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2016 Apr;120(4):620-630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27020161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2016 Dec;34:127-135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27723513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Oct 10;18(1):764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29017458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2018 Oct 18;14(10):e1006541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30335785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Dec;8(12):2517-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25171333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2017 Dec 4;17(1):241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29202688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2018 May 3;173(4):822-837</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29727671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Jun;19(6):1403-1413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28990716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Oct;22(10):3193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25751142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2006 Mar;30(2):143-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16525757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Chem. 2018 Mar 27;6:88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29637069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Aug;20:96-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24879450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2014 Mar 10;537(2):312-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24361203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 Mar;28(3):245-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20212490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Oct;11(10):720-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24018383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 1998 Mar;23(2):126-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9578626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2009 Apr 08;3:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19356237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Feb 23;18(1):198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28228125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Jan;85(2):289-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26576489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3193-3201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30728304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:91-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2018 Dec 15;23(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30558273</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Gueldre (province)</li>
</region>
<settlement>
<li>Wageningue</li>
</settlement>
<orgName>
<li>Université de Wageningue</li>
</orgName>
</list>
<tree>
<country name="Pays-Bas">
<region name="Gueldre (province)">
<name sortKey="Rodenburg, Sander Y A" sort="Rodenburg, Sander Y A" uniqKey="Rodenburg S" first="Sander Y A" last="Rodenburg">Sander Y A. Rodenburg</name>
</region>
<name sortKey="De Ridder, Dick" sort="De Ridder, Dick" uniqKey="De Ridder D" first="Dick" last="De Ridder">Dick De Ridder</name>
<name sortKey="Govers, Francine" sort="Govers, Francine" uniqKey="Govers F" first="Francine" last="Govers">Francine Govers</name>
<name sortKey="Rodenburg, Sander Y A" sort="Rodenburg, Sander Y A" uniqKey="Rodenburg S" first="Sander Y A" last="Rodenburg">Sander Y A. Rodenburg</name>
<name sortKey="Seidl, Michael F" sort="Seidl, Michael F" uniqKey="Seidl M" first="Michael F" last="Seidl">Michael F. Seidl</name>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
</region>
<name sortKey="Vu, Andrea L" sort="Vu, Andrea L" uniqKey="Vu A" first="Andrea L" last="Vu">Andrea L. Vu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000456 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000456 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31289172
   |texte=   Metabolic Model of the Phytophthora infestans-Tomato Interaction Reveals Metabolic Switches during Host Colonization.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31289172" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024